On Σ-porous Sets in Abstract Spaces
نویسنده
چکیده
The main aim of this survey paper is to give basic information about properties and applications of σ-porous sets in Banach spaces (and some other infinite-dimensional spaces). This paper can be considered a partial continuation of the author’s 1987 survey on porosity and σ-porosity and therefore only some results, remarks, and references (important for infinite-dimensional spaces) are repeated. However, this paper can be used without any knowledge of the previous survey. Some new results concerning σ-porosity in finitedimensional spaces are also briefly mentioned. However, results concerning porosity (but not σ-porosity) are mentioned only exceptionally.
منابع مشابه
Inscribing Closed Non-σ-lower Porous Sets into Suslin Non-σ-lower Porous Sets
This paper is a continuation of the work done in [9]. We are interested in the following question within the context of σ-ideals of σ-porous type. Let X be a metric space and let be a σ-ideal of subsets of X . Let S⊂ X be a Suslin set with S / ∈ . Does there exist a closed set F ⊂ S which is not in ? The answer is positive provided that X is locally compact and is a σ-ideal of σP-porous sets, w...
متن کاملΣ-porosity in Monotonic Analysis with Applications to Optimization
We introduce and study some metric spaces of increasing positively homogeneous (IPH) functions, decreasing functions, and conormal (upward) sets. We prove that the complements of the subset of strictly increasing IPH functions, of the subset of strictly decreasing functions, and of the subset of strictly conormal sets are σ-porous in corresponding spaces. Some applications to optimization are g...
متن کاملInfinite games andσ-porosity
We show a new game characterizing various types of σ-porosity for Souslin sets in terms of winning strategies. We use the game to prove and reprove some new and older inscribing theorems for σ-ideals of σ-porous type in locally compact metric spaces.
متن کاملControl and Cybernetics on Σ-porous and Φ-angle-small Sets in Metric Spaces
It is shown that in metric spaces each (α, φ)-meagre set A is uniformly very porous and its index of uniform v-porosity is not smaller than k−α 3k+α , provided that φ is a strictly k-monotone family of Lipschitz functions and α < k. The paper contains also conditions implying that a k-monotone family of Lipschitz functions is strictly k-monotone.
متن کاملOn Fréchet differentiability of Lipschitz maps between Banach spaces
A well-known open question is whether every countable collection of Lipschitz functions on a Banach space X with separable dual has a common point of Fréchet differentiability. We show that the answer is positive for some infinite-dimensional X. Previously, even for collections consisting of two functions this has been known for finite-dimensional X only (although for one function the answer is...
متن کامل